amount of time the two substances are in contact. area in contact between the two substances. specific heat of the material that makes up the substances. the density of the two substances in contact.
Answer:
This phenomenon occurs because the door, being metal and leading to changes in temperature, undergoes proportional and morphological changes, metals face expansion and expansion in the presence of heat, called thermal expansion.
On the other hand, against the cold, thermal contraction is suffered, that is why its volume decreases, and it contracts.
Explanation:
The expansion phenomenon of the door is not linear, since it increases its volume in width and height, therefore simultaneously on the entire surface.
When an area or surface expands, it does so by increasing its dimensions in the same proportion. For example, a metal sheet increases its length and width, which means an increase in area. Area dilation differs from linear dilation in that it involves an increase in area.
The area expansion coefficient is the increase in area that a body of a certain substance experiences, with an area equal to unity, as its temperature rises one degree centigrade. This coefficient is represented by the Greek letter gamma.
Regarding shrinkage, a clear example of this is when a metal foundry or a weld shrinks, sometimes it is difficult to understand with examples like these (doors) because it is little noticeable by our eyes and the dimensional changes for our perspective. it is infima.
<span>Mg + O2 > MgO. In reactant side, 2 O atoms and 1 Mg are present. In product side, 1 Mg and O atoms are present. Put 2 in product side to balance O atoms and 2 at Mg in reactant side to balance Mg atoms. Therefore the balanced equation becomes, 2Mg + O2 ----> 2MgO. Hope it helps.</span>
Answer:
There is 17,114825 g of powdered drink mix needed
Explanation:
<u>Step 1 :</u> Calculate moles
As given, the concentration of the drink is 0.5 M, this means 0.5 mol / L
Since the volume is 100mL, we have to convert the concentration,
⇒0.5 / 1 = x /0.1 ⇒ 0.5* 0.1 = x = 0.05 M
This means there is 0.05 mol per 100mL
e
<u>Step 2 </u>: calculate mass of the powdered drink
here we use the formula n (mole) = m(mass) / M (Molar mass)
⇒ since powdered drink mix is usually made of sucrose (C12H22O11) and has a molar mass of 342.2965 g/mol.
0.05 mol = mass / 342.2965 g/mol
To find the mass, we isolate it ⇒0.05 mol * 342.2965 g/mol = 17,114825g
There is 17,114825 g of powdered drink mix needed