Answer:
231
Step-by-step explanation:
because the whole circle has an area of 360 so on the right side there is half and a little more so you would cut it in half so you have 180 and on the right side you still have a little left so thats about 10 so now you have 190 then you add 21 +20 you have 41 +190 =231 hope this helps
Answer: point P and point S
Step-by-step explanation:
took the test
Use the distance formula to find the value of the side lengths.
d=√((x1-x2)²+(y1-y2)²
d of side AC is 6
d of side CB is 10
Angela's use of the Pythagorean Theorem of 10²+6²+c² is incorrect; she put the right values in the wrong spots, the formula needed is:
6²+10²=c²
Option C- Angelica's side lengths were too long.
Answer: X= 20/9
Step-by-step explanation: X equals 20 over 9
1. A polynomial function is a function that can be written in the form
f(x)=anxn +an−1xn−1 +an−2xn−2 +...+a2x2 +a1x+a0,
where each a0, a1, etc. represents a real number, and where n is a natural number Here are the steps required for Solving Polynomials by Factoring:
Step 1: Write the equation in the correct form. To be in the correct form, you must remove all parentheses from each side of the equation by distributing, combine all like terms, and finally set the equation equal to zero with the terms written in descending order.
Step 2: Use a factoring strategies to factor the problem.
Step 3: Use the Zero Product Property and set each factor containing a variable equal to zero.
Step 4: Solve each factor that was set equal to zero by getting the x on one side and the answer on the other side.
Example 1 – Solve: 3x3 = 12x
Step 1: Write the equation in the correct form. In this case, we need to set the equation equal to zero with the terms written in descending order.
Step 1
Step 2: Use a factoring strategies to factor the problem.
Step 2
Step 3: Use the Zero Product Property and set each factor containing a variable equal to zero.
Step 3
Step 4: Solve each factor that was set equal to zero by getting the x on one side and the answer on the other side.
Step 4
Example 2 – Solve: x3 + 5x2 = 9x + 45
Step 1: Write the equation in the correct form. In this case, we need to set the equation equal to zero with the terms written in descending order.
Step 1
Step 2: Use a factoring strategies to factor the problem.
Step 2
Step 3: Use the Zero Product Property and set each factor containing a variable equal to zero.
Step 3
Step 4: Solve each factor that was set equal to zero by getting the x on one side and the answer on the other side.
Step 4
Click Here for Practice Problems
Example 3 – Solve: 6x3 – 16x = 4x2
Step 1: Write the equation in the correct form. In this case, we need to set the equation equal to zero with the terms written in descending order.
Step 1
Step 2: Use a factoring strategies to factor the problem.
Step 2
Step 3: Use the Zero Product Property and set each factor containing a variable equal to zero.
Step 3
Step 4: Solve each factor that was set equal to zero by getting the x on one side and the answer on the other side.
Step 4
Click Here for Practice Problems
Example 4 – Solve: 3x2(3x + 4) = 12x(x + 3)
Step 1: Write the equation in the correct form. In this case, we need to remove all parentheses by distributing and set the equation equal to zero with the terms written in descending order.
Step 1
Step 2: Use a factoring strategies to factor the problem.
Step 2
Step 3: Use the Zero Product Property and set each factor containing a variable equal to zero.
Step 3
Step 4: Solve each factor that was set equal to zero by getting the x on one side and the answer on the other side.
Step 4
Click Here for Practice Problems
Example 5 – Solve: 16x4 = 49x2
Step 1: Write the equation in the correct form. In this case, we need to set the equation equal to zero with the terms written in descending order.
Step 1
Step 2: Use a factoring strategies to factor the problem.
Step 2
Step 3: Use the Zero Product Property and set each factor containing a variable equal to zero.
Step 3
Step 4: Solve each factor that was set equal to zero by getting the x on one side and the answer on the other side.
Step 4
Click Here for Practice Problems