Given that for each <span>$2 increase in price, the demand is less and 4 fewer cars are rented.
Let x be the number of $2 increases in price, then the revenue from renting cars is given by
.
Also, given that f</span><span>or each car that is rented, there are routine maintenance costs of $5 per day, then the total cost of renting cars is given by
Profit is given by revenue - cost.
Thus, the profit from renting cars is given by
</span><span>
For maximum profit, the differentiation of the profit function equals zero.
i.e.
</span><span>
The price of renting a car is given by 48 + 2x = 48 + 2(8) = 48 + 16 = 64.
Therefore, the </span><span>rental charge will maximize profit is $64.</span>
Answer: The correct option is A, itis the product of the initial population and the growth factor after h hours.
Explanation:
From the given information,
Initial population = 1000
Increasing rate or growth rate = 30% every hour.
No of population increase in every hour is,
Total population after h hours is,
It is in the form of,
Where is the initial population, r is increasing rate, t is time and [tex(1+r)^t[/tex] is the growth factor after time t.
In the above equation 1000 is the initial population and is the growth factor after h hours. So the equation is product of of the initial population and the growth factor after h hours.
Therefore, the correct option is A, itis the product of the initial population and the growth factor after h hours.
the one where they are diagonal from one another
I need to know how many miles the race is
Answer:
YEkk
Step-by-step explanation:
pkefkfpefk