<h3>
Answer:</h3>
49 N
<h3>
Explanation:</h3>
<u>We are given;</u>
- Mass of the brick as 3 kg
- The coefficient of friction as 0.6
We are required to determine the force that must be applied by the woman so the brick does not fall.
- We need to importantly note that;
- For the brick not to fall the, the force due to gravity is equal to the friction force acting on the brick.
- That is; Friction force = Mg
But; Friction force = μ F
Therefore;
μ F = mg
0.6 F = 3 × 9.8
0.6 F = 29.4
F = 49 N
Therefore, she must use a force of 49 N
The resistance of a wire is directly proportional to the length of the wire. That is the longer the length of the wire, the higher the resistance and the shorter the length of the wire, the smaller the resistance.
Answer: A and B
Explanation:
A
The wavelength of both transverse and longitudinal waves is measured parallel to the direction of the travel of the wave.
Because wavelength is the distance between the two successful crest or trough.
B)
Amplitude of longitudinal waves is measured at right angles to the direction of the travel of the wave and represents the maximum distance the molecule has moved from its normal position.
Because amplitude is the measure of maximum displacement from the original position
Explanation:
A chemical reaction in which heat or energy is released is known as an exothermic reaction.
On the other hand, when two objects are placed together and heat flows from hotter object to colder object then this process is known as conduction. Therefore, energy is dissipated in conduction process.
Since energy released released goes into the atmosphere and is not used anywhere.
Thus, we can conclude that when an exothermic reaction releases thermal energy, this energy is usually not useable to do work and it is dissipated by conduction.