Answer:
3,432 m²
Step-by-step explanation:
The amount of aluminum in square meters needed to make the mailboxes = 1863(surface area of each mailbox)
Surface area of each mail box = ½(surface area of cylinder) + (Surface area of rectangular prism/box - area of the surface of the box that joins the half-cylinder)
✔️Surface area of ½-cylinder = ½[2πr(h + r)]
r = ½(0.4) = 0.2 m
h = 0.6 m
π = 3.14
Surface area of ½-cylinder = ½[2*3.14*0.2(0.6 + 0.2]
= 0.628(0.8)
Surface area of ½-cylinder = 0.5024 m²
✔️Surface area of the rectangular box/prism = 2(LW + LH + WH)
L = 0.6 m
W = 0.4 m
H = 0.55 m
Surface area = 2(0.6*0.4 + 0.6*0.55 + 0.4*0.55)
Surface area of rectangular box = 1.58 m²
✔️Area of the surface joining the half cylinder and the box = L*W = 0.6*0.4 = 0.24 m²
✅Surface area of 1 mailbox = (0.5024) + (1.58 - 0.24)
= 0.5024 + 1.34
= 1.8424
Amount of aluminum needed to make 1863 mailboxes = 1863 × 1.8424 = 3,432.3912
= 3,432 m²
Answer:
D
Step-by-step explanation:
Given :
A bike path is 3 miles long. there are distance markers every path one fourth mile to the end of the path.
To Find :
Which number line correctly models this situation and the total number of distance markers.
Solution :
It is given that their are markers every 1/4 part of mile.
So, their are 4 markers per mile.
Numbers of markers in 3 miles long path is :
Therefore, the total number of distance markers in 3 mile path is 12.
Hence, this is the required solution.
Well you would have to round this 5 and above goes up. Since 1 is lower than 5 that would leave you at 6.37. 7 rounds up so that would change to 6.4. Lastly 4 would round down, So that would leave you with 6. Now 6 is the simplest form but if your looking for rounded to the nearest tenth the answer would be 6.4. If your looking for rounded to the nearest 100th place 6.37. But over all simplest form is 6.