The level of measurement of each given variable are:
1. Ordinal
2. Nominal
3. Ratio
4. Interval
5. Ordinal
6. Nominal
7. Ratio
8. Interval
Level of measurement is used in assigning measurement to variables depending on their attributes.
There are basically four (4) levels of measurement (see image in the attachment):
1. <u>Nominal:</u> Here, values are assigned to variables just for naming and identification sake. It is also used for categorization.
- Examples of variables that fall under the measurement are: Favorite movie, Eye Color.
<u>2. Ordinal:</u> This level of measurement show difference between variables and the direction of the difference. In order words, it shows magnitude or rank among variables.
- Examples of such variables that fall under this are: highest degree conferred, birth order among siblings in a family.
<u>3. Interval Scale:</u> this third level of measurement shows magnitude, a known equal difference between variables can be ascertain. However, this type of measurement has <em>no true zero</em> point.
- Examples of the variables that fall here include: Monthly temperatures, year of birth of college students
4. Ratio Scale: This scale of measurement has a "true zero". It also has every property of the interval scale.
- Examples are: ages of children, volume of water used.
Therefore, the level of measurement of each given variable are:
1. Ordinal
2. Nominal
3. Ratio
4. Interval
5. Ordinal
6. Nominal
7. Ratio
8. Interval
Learn more about level of measurement here:
brainly.com/question/20816026
Answer:
For the first question, the answer is 4/3. For the second it is 16.
Step-by-step explanation:
I just took the quiz! Can I please have Brainliest? Hope this helped!
Answer:
The answer to your question is: 2.29 units
Step-by-step explanation:
Data
Volume = 16π
radius = ?
Formula
V =
Process
16 π =
r³ = 12
r = 2.29
Multiply her answer by -6 and see if the result is -108
Answer:
6.68 %.
Step-by-step explanation:
The standardised z-score = ( 10.95 - 10.5) / 0.3
= 1.5.
Looking up the Normal Distribution tables ( area to the left) 1.5 corresponds to 0.93319 so for a weight above 10.95 the proportion is
1 - 0.93319 = 0.06681
= 6.68%.