The resultant velocity of the plane is the sum of the two velocity vectors which are perpendicular to each other. See the attached figure.
The magnitude of the resultant velocity is
.
The approximate value of the actual velocity of the plane is . Correct choice is (D).
You are right i tried it and i got it right
Answer: 24.2° SouthWest
<u>Step-by-step explanation:</u>
First step: DRAW A PICTURE of the vectors from head to tail <em>(see image)</em>
I created a perpendicular from the resultant vector to the vertex of the given vectors so I could use Pythagorean Theorem to find the length of the perpendicular. Then I used that value to find the angle of the plane.
<u>Perpendicular (x):</u>
cos 35° = adjacent/hypotenuse
cos 35° = x/160
→ x = 160 cos 35°
<u>Angle (θ):</u>
sin θ = opposite/hypotenuse
sin θ = x/320
sin θ = 160 cos 35°/320
θ = arcsin (160 cos 35°/320)
θ = 24.2°
Direction is down (south) and left (west)
Answer: PLATO
Step-by-step explanation:
HI THERE