When looking to power your equipment or vehicle with natural gas, the first question that springs to mind is: what is natural gas? A lot of people use natural gas in their homes for cooking and heating, but they don’t really give it some thought. So, let’s see what natural gas is and how it’s different from other forms of fossil fuels like oil and coal.
Natural Gas is a fossil fuel that exist in a gaseous state and is composed mainly of methane (CH4) a small percentage of other hydrocarbons (e.g. ethane). The use of natural gas is becoming more and more popular as it can be used with commercial, industrial, electric power generation and residential applications.
Unsaturated organic compounds with a carbon-to-carbon double bond and alkynes with a carbon-to-carbon triple bond, as well as aldehydes and ketones with a carbon-to-oxygen double bond, undergo addition reactions.
Döbereiner grouped the known elements into <em>triads</em> (sets of three) so that
• The <em>atomic mass of the middle element</em> was approximately the average of the other two
• The <em>chemical properties of the middle element</em> were between those of the other two
• The <em>physical properties of the middle element</em> were between those of the other two
One example of a triad is Li – Na – K.
(a) Atomic mass of Na = 23.0 u
Average atomic mass of Li and K = (6.9 u + 39.1 u)/2 = 46.0 u/2 = 23.0 u
(b) Li reacts slowly with water. Na reacts rapidly. Potassium reacts violently.
(c) Melting point of Na = 371 °C.
Average melting point of Li and K = (454 °C + 330 °C)/2 = 784 °C/2
= 392 °C
All of them are soluble salt.
First one dissociates into two ions.
The second one dissociates into 3 ions.
The third dissociate into 4 ions. therefore, Al(NO3)3
Answer:
Step 1 should be convert atoms to moles (n). Step 2 should be convert moles (n) to mass (m).
Step 1
Use dimensional analysis to convert the number of atoms to moles.
1 mole atoms = 6.022 × 10²³ atoms
n(Ag) = 2.3 × 10²⁴ Ag atoms × (1 mol Ag/6.022 × 10²³ Ag atoms) = 3.8193 mol Ag
Step 2
Convert the moles of Ag to mass.
mass (m) = moles (n) × molar mass (M)
n(Ag) = 3.8193 mol Ag
M(Ag) = atomic weight on the periodic table in g/mol = 107.868 g Ag/mol Ag
m(Ag) = 3.8193 mol × 107.868 g/mol = 412 g Ag = 410 g Ag rounded to two significant figures
The mass of 2.3 × 10²⁴ Ag atoms is approximately 410 g.
Explanation: