Electromagnets are used in home appliances quite regularly and are used even in simple home appliances. Common home appliances that use electromagnets are toasters, printers, and microwave ovens. Electromagnets are a certain type of magnet that does not function unless an electrical current flows through it. These appliances create the magnetic field by flowing electricity through certain parts of the appliance.
To solve this problem, let us recall that the formula for
gases assuming ideal behaviour is given as:
rms = sqrt (3 R T / M)
where
R = gas constant = 8.314 Pa m^3 / mol K
T = temperature
M = molar mass
Now we get the ratios of rms of Argon (1) to hydrogen (2):
rms1 / rms2 = sqrt (3 R T1 / M1) / sqrt (3 R T2 / M2)
or
rms1 / rms2 = sqrt ((T1 / M1) / (T2 / M2))
rms1 / rms2 = sqrt (T1 M2 / T2 M1)
Since T1 = 4 T2
rms1 / rms2 = sqrt (4 T2 M2 / T2 M1)
rms1 / rms2 = sqrt (4 M2 / M1)
and M2 = 2 while M1 = 40
rms1 / rms2 = sqrt (4 * 2 / 40)
rms1 / rms2 = 0.447
Therefore the ratio of rms is:
<span>rms_Argon / rms_Hydrogen = 0.45</span>
The concept required to solve this problem is linked to inductance. This can be defined as the product between the permeability in free space by the number of turns squared by the area over the length. Recall that Inductance is defined as the opposition of a conductive element to changes in the current flowing through it. Mathematically it can be described as
Here,
= Permeability at free space
N = Number of loops
A = Cross-sectional Area
l = Length
Replacing with our values we have,
Therefore the Inductance is
Answer:
Approximately 0.0898 W/m².
Explanation:
The intensity of light measures the power that the light delivers per unit area.
The source in this question delivers a constant power of . If the source here is a point source, that of power will be spread out evenly over a spherical surface that is centered at the point source. In this case, the radius of the surface will be 9.6 meters.
The surface area of a sphere of radius is equal to . For the imaginary 9.6-meter sphere here, the surface area will be:
.
That power is spread out evenly over this 9.6-meter sphere. The power delivered per unit area will be:
.
Answer:
F=2627.6N
Explanation:
The work done by this resistive force while traveling a distance <em>d</em> underwater would be:
where the minus sign appears because the force is upwards and the displacement downwards.
This work is equal to the change of mechanical energy. At the diving plataform and underwater, when she stops moving, the woman has no kinetic energy, so all can be written in terms of her total change of gravitational potential energy:
Putting all together: