The free energy change of the reaction; Fe (s) + Au3+ (aq) -> Fe3+ (aq) + Au (s) is calculated to be -443.83KJ/mol.
For the reaction shown in question 7, we can divide it into half equations as follows;
Oxidation half equation;
6 Al (s) -------> 6Al^3+(aq) + 18e
Reduction half equation;
3Cr2O7^2-(aq) + 42H^+(aq) + 18e -----> 6Cr^3+(aq) + 21H2O(l)
The balanced reaction equation is;
6Al(s) + 3Cr2O7^2-(aq) + 42H^+(aq) -----> 6Al^3+(aq) + 6Cr^3+(aq) + 21H2O(l)
The E° of this reaction is obtained from;
E° anode = -0.04 V
E°cathode = +1.50 V
E° cell = +1.50 V - (-0.04 V) = 1.54 V
Given that;
ΔG° = -nFE°cell
n = 3, F = 96500, E°cell = 1.54 V
ΔG° = -(3 × 96500 × 1.54)
ΔG° = -443.83KJ/mol
Learn more: brainly.com/question/967776
Explanation:
For an isothermal process equation will be as follows.
W = nRT ln
It is given that mass is 10 kg/s or 10,000 g/s (as 1 kg = 1000 g). So, calculate number of moles of water as follows.
No. of moles =
=
= 555.55 mol/s
= 556 mol/s (approx)
As T = or (50 + 273.15) K = 323.15 K. Hence, putting the given values into the above formula as follows.
W = nRT ln[/tex]\frac{P_{1}}{P_{2}}[/tex]
=
=
= -3440193.809 J/s
Negative sign shows work is done by the pump. Since, 1 J = 0.001 kJ. Therefore, converting the calculated value into kJ as follows.
= 3440.193 kJ/s
= 3451 kJ/s (approx)
Thus, we can conclude that the pump work is 3451 kJ/s.
Answer:
1.The substance(s) to the left of the arrow in a chemical equation are called reactants. A reactant is a substance that is present at the start of a chemical reaction. The substance(s) to the right of the arrow are called products . A product is a substance that is present at the end of a chemical reaction.The combustion of methane or octane is exothermic; it releases energy. CH4 + 2 O2 → CO2 + 2 H2O + energy The energies of the products are lower than the energiies of the reactants.
Explanation: