Dendrites, the cell body, axon, terminal branches of the axon
Answer:
KE = 2.535 x 10⁷ Joules
Explanation:
given,
angular speed of the fly wheel = 940 rad/s
mass of the cylinder = 630 Kg
radius = 1.35 m
KE of flywheel = ?
moment of inertia of the cylinder
=
= 574 kg m²
kinetic energy of the fly wheel
KE = 2.535 x 10⁷ Joules
the kinetic energy of the flywheel is equal to KE = 2.535 x 10⁷ Joules
Answer:
True
Explanation:
Velocity is a vector quantity, which means that it carries both magnitude and direction. Hence when direction of a particle changes, although magnitude (speed) may remain same, it's velocity changes due to direction change. For ex. A particle is m... A particle is moving along x axis with speed 1m/s, it's velocity will be represented as 1i (i represents unit vector along x)
But if it now starts moving along y axis, it's velocity is 1j (j represents unit vector along y axis). Hence velocity changes with direction.
brainllest pls .
Answer:
mass of the fish is 8.11 kg
Explanation:
As we know that the frequency of oscillation of spring block system is given as
here we know that the reading of scale varies from 0 to 155 N from length varies from x = 0 to x = 10 cm
Now we have
so now we have
so mass of the fish is 8.11 kg
Explanation:
It is given that,
Mass of person, m = 70 kg
Radius of merry go round, r = 2.9 m
The moment of inertia,
Initial angular velocity of the platform,
Part A,
Let is the angular velocity when the person reaches the edge. We need to find it. It can be calculated using the conservation of angular momentum as :
Here,
Solving the above equation, we get the value as :
Part B,
The initial rotational kinetic energy is given by :
The final rotational kinetic energy is given by :
Hence, this is the required solution.