I think I can answer your question since I've worked on this before.
Your answer should be obtain energy.
If your answer choices were;
obtain energy
escape predators
produce offspring
excrete waste
To solve this problem we will use the definition of the period in a simple pendulum, which warns that it is dependent on its length and gravity as follows:
Here,
L = Length
g = Acceleration due to gravity
We can realize that is a constant so it is proportional to the square root of its length over its gravity,
Since the body is in constant free fall, that is, a point where gravity tends to be zero:
The value of the period will tend to infinity. This indicates that the pendulum will no longer oscillate because both the pendulum and the point to which it is attached are in free fall.
Answer:
mb = 3.75 kg
Explanation:
System of forces in balance
ΣFx =0
ΣFy = 0
Forces acting on the box
T₁ : Tension in string 1 ,at angle of 50° with the horizontal on the left
T₂ = 40 N : Tension in string 2, at angle of 75° with the horizontal on the right.
Wb :Weightt of the box (vertical downward)
x-y T₁ and T₂ components
T₁x= T₁cos50°
T₁y= T₁sin50°
T₂x= 30*cos75° = 7.76 N
T₂y= 30*sin75° = 28.98 N
Calculation of the Wb
ΣFx = 0
T₂x-T₁x = 0
T₂x=T₁x
7.76 = T₁cos50°
T₁ = 7.76 /cos50° = 12.07 N
ΣFy = 0
T₂y+T₁y-Wb = 0
28.98 + 12.07(cos50°) = Wb
Wb = 36.74 N
Calculation of the mb ( mass of the box)
Wb = mb* g
g: acceleration due to gravity = 9.8 m/s²
mb = Wb/g
mb = 36.74 /9.8
mb = 3.75 kg
ummmm it might be 300... i used a calculator
sorry if it is wrong