Answer:
2HNO3+Ca(OH)2 = Ca(NO3)2+2H2O
Explanation:
The reaction between Nitric acid(HNO3)and Calcium hydroxide(Ca(OH)2) gives Calcium Nitrate( Ca(NO3)2 and Water( H2O)
Answer: (Structure attached).
Explanation:
This type of reaction is an aromatic electrophilic substitution. The overall reaction is the replacement of a proton (H +) with an electrophile (E +) in the aromatic ring.
The aromatic ring in p-fluoroanisole has two sustituents, an <u>halogen</u> and a <u>methoxy group</u>, which are <em>ortho-para</em> directing substituents.
Aryl sulfonic acids are easily synthesized by an electrophilic substitution reaction aromatic using <u>sulfur trioxide as an electrophile</u> (very reactive).
The reaction occurs in three steps:
- The attack on the electrophile forms the sigma complex.
- The loss of a proton regenerates an aromatic ring.
- The sulfonate group can be protonated in the presence of a strong acid (H₂SO₄).
Normally, a mixture of <em>ortho-para</em> substituted products would be obtained. However, since both <em>para</em> positions are occupied, only the <em>ortho </em>substituted product is obtained here.
The average acceleration is -5.0 m·s⁻².
The formula for acceleration (<em>a</em>) is
= 25 m·s⁻¹; = 0; = 5.0 s
∴ = -5.0 m·s⁻²
The negative sign tells you that the object is <em>slowing down</em>, i.e., it is <em>decelerating</em>.
This question is incomplete because the options are missing; here are the options:
Which of the following is LESS dense than water?
The spoon
The glass
The tablets
The bubbles
The correct answer to this question is The bubbles
Explanation:
In general, the density of materials and substances affects their buoyancy. This implies in water less dense materials will float and those with higher density will sink. In the situation presented, the only element that is less dense than water are bubbles; this is shown by the movement of the bubbles as these originate in the bottom of the glass of water but they rise to the surface, which shows they are less dense than water.
Answer:
0.21 M. (2 sig. fig.)
Explanation:
The molarity of a solution is the number of moles of the solute in each liter of the solution. The unit for molarity is M. One M equals to one mole per liter.
How many moles of NaOH in the original solution?
,
where
- is the number of moles of the solute in the solution.
- is the concentration of the solution. for the initial solution.
- is the volume of the solution. For the initial solution, for the initial solution.
.
What's the concentration of the diluted solution?
.
- is the number of solute in the solution. Diluting the solution does not influence the value of . for the diluted solution.
- Volume of the diluted solution: .
Concentration of the diluted solution:
.
The least significant number in the question comes with 2 sig. fig. Keep more sig. fig. than that in calculations but round the final result to 2 sig. fig. Hence the result: 0.021 M.