Answer: 150 grams
Explanation: m = V × ρ
= 15 milliliter × 10 gram/cubic centimeter
= 15 cubic centimeter × 10 gram/cubic centimeter
= 150 gram
Answer:
Molar heat of solution of KBr is 20.0kJ/mol
Explanation:
Molar heat of solution is defined as the energy released (negative) or absorbed (Positive) per mole of solute being dissolved in solvent.
The dissolution of KBr is:
KBr → K⁺ + Br⁻
In the calorimeter, the temperature decreases 0.370K, that means the solution absorbes energy in this process. The energy is:
q = 1.36kJK⁻¹ × 0.370K
q = 0.5032kJ
Moles of KBr in 3.00g are:
3.00g × (1mol / 119g) = 0.0252moles
Thus, molar heat of solution of KBr is:
0.5032kJ / 0.0252moles = <em>20.0kJ/mol</em>
Answer:- 1840 g.
Solution:- We have been given with 3.35 moles of and asked to calculate it's mass.
To convert the moles to grams we multiply the moles by the molar mass of the compound. Molar mass of the compound is the sum of atomic masses of all the atoms present in it.
molar mass of = atomic mass of Hg + 2(atomic mass of I) + 6(atomic mass of O)
= 200.59+2(126.90)+6(16.00)
= 200.59+253.80+96.00
= 550.39 gram per mol
Let's multiply the given moles by the molar mass:
= 1843.8 g
Since, there are three sig figs in the given moles of compound, we need to round the calculated my to three sig figs also. So, on rounding off to three sig figs the mass becomes 1840 g.
This reaction is decomposition. It is the breakdown of a compound into simpler and smaller elements.
We have seasons on earth because of the way the earth is tilt on its axis. at a certain time in the year, the sun's rays reach certain parts of the globe more than others.
some places have 4 seasons because they are in the northern hemisphere, which is in the sweet spot of the sun's rays that give us each season. other places only have 1 or 2 because they are not in the northern hemisphere.