Answer:
The length is 16 ft, and the width is 3 ft.
Step-by-step explanation:
Let L = length & let W = width.
The perimeter of a rectangle is
P = 2(L + W)
The area of a rectangle is
A = LW
We know the perimeter and the area, so we substitute those values int he equations above and we switch sides in both equations.
Perimeter: 2(L + W) = 38
Divide both sides by 2:
L + W = 19
Area: LW = 48
We have a system of two equations in two unknowns:
L + W = 19
LW = 48
Solve the first equation for L and substitute it into the second equation.
L = 19 - W
(19 - W)W = 48
19W - W^2 - 48 = 0
Multiply both sides by -1, and rearrange the order of the terms.
W^2 - 19W + 48 = 0
(W - 16)(W - 3) = 0
W - 16 = 0 or W - 3 = 0
W = 16 or W = 3
Use W = 3 to find L
L = 19 - W
L = 19 - 3
L = 16
Answer: The length is 16 ft, and the width is 3 ft.