1. a b c
2. a b c
3. a b c
4. a b c
5. a b c
then she eliminated 1 choice in 1 and 2, say as follows
1. b c
2. a b
3. a b c
4. a b c
5. a b c
Probability of answering correctly the first 2, and at least 2 or the remaining 3 is
P(answering 1,2 and exactly 2 of 3.4.or 5.)+P(answering 1,2 and also 3,4,5 )
P(answering 1,2 and exactly 2 of 3.4.or 5.)=
P(1,2,3,4 correct, 5 wrong)+P(1,2,3,5 correct, 4 wrong)+P(1,2,4,5 correct, 3 wrong)
also P(1,2,3,4 c, 5w)=P(1,2,3,5 c 4w)=P(1,2,4,5 c 3w )
so
P(answering 1,2 and exactly 2 of 3.4.or 5.)=3*P(1,2,3,4)=3*1/2*1/2*1/3*1/3*2/3=1/4*2/9=2/36=1/18
note: P(1 correct)=1/2
P(2 correct)=1/2
P(3 correct)=1/3
P(4 correct)=1/3
P(5 wrong) = 2/3
P(answering 1,2 and also 3,4,5 )=1/2*1/2*1/3*1/3*1/3=1/108
Ans: P= 1/18+1/108=(6+1)/108=7/108
Answer:
It is either 11/12 or 0.91666666667.....
Step-by-step explanation:
Because this can not be actually divided into a "number" like 2 or 5, we can only get a approximate. Like the top answer.
Round to the nearest ten is 0.9
Round it to nearest hundredths is 0.92
Remember that the area of a rectangle is the length of the rectangle multiplied by the width of the rectangle.
In this case, we could say (where is the area of the rectangle):
Substituting the values the problem gave us for and , we can find the formula for in terms of , which is:
The formula for the area of the rectangle would be A(x) = 10x³ - 20x² + 65x.