<span>If the refrigerator weights 1365 and you are not exerting any vertical force on it, then the normal force is also 1365N. so Fn=1365
Fsf = Static frictional force = (coefficient of static friction) * (Normal force)
So the least for you could exert to move it is equal to the Fsf.
Fsf = (0.49)(1365N)</span><span>
</span>
This can be seen through the fact that Aksionov has the ability to seek his own justice many times throughout the story, yet does not take it
Refer to the diagram shown below.
Assume that air resistance is ignored.
Note:
The distance, h, of a falling object with initial vertical velocity of zero at time t is
h = (1/2)gt²
where
g = 9.8 m/s²
The initial vertical velocity of the supplies is 0 m/s.
It the time taken for the supplies to reach the ground is t, then
(50 m) = (1/2)*(9.8 m/s²)*(t s)²
Hence obtain
t² = 50/4.9 = 10.2041
t = 3.1944 s
The horizontal distance traveled at a speed of 100 m/s is
d = (100 m/s)*(3.1944 s) = 319.44 m
Answer: 319.4 m (nearest tenth)
Answer:
the charge per unit area on the plastic sheet is - 3.23 x 10⁻⁷ C/m²
Explanation:
given information:
styrofoam mass, m = 16 g = 0.016 kg
net charge, q = - 8.6 μC
to calculate the charge per unit area on the plastic sheet, we can use the following equation:
where
the force between the electric field
m = mass
g = gravitational force
where
q = charge
E = electric field
and
E = σ/2ε₀
where
ε₀ = permitivity
thus
mg = qσ/2ε₀
σ = (2mg ε₀)/q
= 2 (0.016) (9.8) (8.85 x 10⁻¹²)/( - 8.6 x 10⁻⁶)
= - 3.23 x 10⁻⁷ C/m²
Let’s say you have a spring. You press on the spring with your finger. The spring goes down. This is the action force. Then, the spring goes back up after you take your finger off of it. This is known as the reaction force.