Sr is the limiting reactant.
Given the reaction equation;
2Sr + O2 (g) → 2SrO
2 moles of Sr reacts with 1 mole of O2
2 moles Sr will react with x mole of O2
x = 2 ×1/2
x = 1 mole of O2
Since we have more O2 than required, it is the reactant in excess, hence Sr is the limiting reactant.
Learn more: brainly.com/question/14225536
The level of toxins in the fish's cell is equivalent to the level of toxins in the water. Therefore, in order to reduce the toxins further, we should replace the now contaminated water with clean water. After the level of toxins in the fish's cell stops reducing, we replace the water with clean water once again.
Answer:
The specific heat of the metal is 2.09899 J/g℃.
Explanation:
Given,
For Metal sample,
mass = 13 grams
T = 73°C
For Water sample,
mass = 60 grams
T = 22°C.
When the metal sample and water sample are mixed,
The addition of metal increases the temperature of the water, as the metal is at higher temperature, and the addition of water decreases the temperature of metal. Therefore, heat lost by metal is equal to the heat gained by water.
Since, heat lost by metal is equal to the heat gained by water,
Qlost = Qgain
However,
Q = (mass) (ΔT) (Cp)
(mass) (ΔT) (Cp) = (mass) (ΔT) (Cp)
After mixing both samples, their temperature changes to 27°C.
It implies that
, water sample temperature changed from 22°C to 27°C and metal sample temperature changed from 73°C to 27°C.
Since, Specific heat of water = 4.184 J/g°C
Let Cp be the specific heat of the metal.
Substituting values,
(13)(73°C - 27°C)(Cp) = (60)(27°C - 22℃)(4.184)
By solving, we get Cp =
Therefore, specific heat of the metal sample is 2.09899 J/g℃.
I think the answer is 101.2 L
Rubbing Alcohols are chemical compounds because rubbing alcohol itself is a strecture made up of many different chemicals combinding in a compound that make, C3H8O