In a combustion of a hydrocarbon compound, 2 reactions are happening per element:
C + O₂ → CO₂
2 H + 1/2 O₂ → H₂O
Thus, we can determine the amount of C and H from the masses of CO₂ and H₂O produced, respectively.
1.) Compute for the amount of C in the compound. The data you need to know are the following:
Molar mass of C = 12 g/mol
Molar mass of CO₂ = 44 g/mol
Solution:
0.5008 g CO₂*(1 mol CO₂/ 44 g)*(1 mol C/1 mol CO₂) = 0.01138 mol C
0.01138 mol C*(12 g/mol) = 0.13658 g C
Compute for the amount of H in the compound. The data you need to know are the following:
Molar mass of H = 1 g/mol
Molar mass of H₂O = 18 g/mol
Solution:
0.1282 g H₂O*(1 mol H₂O/ 18 g)*(2 mol H/1 mol H₂O) = 0.014244 mol H
0.014244 mol H*(1 g/mol) = 0.014244 g H
The percent composition of pure hydrocarbon would be:
Percent composition = (Mass of C + Mass of H)/(Mass of sample) * 100
Percent composition = (0.13658 g + 0.014244 g)/(<span>0.1510 g) * 100
</span>Percent composition = 99.88%
2. The empirical formula is determined by finding the ratio of the elements. From #1, the amounts of moles is:
Amount of C = 0.01138 mol
Amount of H = 0.014244 mol
Divide the least number between the two to each of their individual amounts:
C = 0.01138/0.01138 = 1
H = 0.014244/0.01138 = 1.25
The ratio should be a whole number. So, you multiple 4 to each of the ratios:
C = 1*4 = 4
H = 1.25*4 = 5
Thus, the empirical formula of the hydrocarbon is C₄H₅.
3. The molar mass of the empirical formula is
Molar mass = 4(12 g/mol) + 5(1 g/mol) = 53 g/mol
Divide this from the given molecular weight of 106 g/mol
106 g/mol / 53 g/mol = 2
Thus, you need to multiply 2 to the subscripts of the empirical formula.
Molecular Formula = C₈H₁₀
Since medals form cations
nonmedals form anions
Answer:
Plants, algae, and a group of bacteria called cyanobacteria are the only organisms capable of performing photosynthesis
<u>True,</u> A mole of one substance has the same number of atoms as a mole of any other substance.
<h3>
What is a mole?</h3>
Mole, also spelled mol, in chemistry, a standard scientific unit for measuring large quantities of very small entities such as atoms, molecules, or other specified particles.
The mole designates an extremely large number of units, 6.02214076 × . The General Conference on Weights and Measures defined the mole as this number for the International System of Units (SI) effective from May 20, 2019. The mole was previously defined as the number of atoms determined experimentally to be found in 12 grams of carbon-12.
The number of units in a mole also bears the name Avogadro’s number, or Avogadro’s constant, in honour of the Italian physicist Amedeo Avogadro (1776–1856). Avogadro proposed that equal volumes of gases under the same conditions contain the same number of molecules, a hypothesis that proved useful in determining atomic and molecular weights and which led to the concept of the mole.
Learn more about mole
brainly.com/question/1427235
#SPJ4
The copper wire was sanded before burning in order to make sure that copper metal was exposed on the surface of the wire.
Answer: B
Explanation
The copper wire when placed in atmosphere without coating leads to oxidation of copper metal with respect to the impurities present in the atmosphere.
As copper is electropositive in nature, so electronegative ions present in the universe will try to react with copper and the copper will react easily with other elements.
So generally copper wire is coated with color or polymer coating.
In this case, the copper wire without any coating is sanded, so that the eddy sheets or polishing materials on friction with copper wire will remove the impurities by the electrostatic law of conservation of charges and charge transfer.
As the impurities are removed when copper wire is sanded, the copper atoms will be exposed on the surface of the wire leading to burning of copper in the copper wire.