For the conversions
I will start with pressure
1atm=101.3kPa
x =700kPa
x=700kPa/101.3kPa
x=6.91atm
Temperature
273K+30.00C
303K
Volume
1L=1000ml
x =50ml
x=0.05L
PV=nRT
6.91*0.05=n*0.08206*303
0.3455=24.86418n
0.3455/24.86418=n
0.0138=n
number of moles = 0.0138moles
Note: 0.08206 is the gas constant in this case
Answer:
See explaination
Explanation:
Going by the clues that it is between Silver Flouride (AgF) and Sodium Fluoride (NaF) and since it is an aqueous solution , the 1 liter bottle is likely to be Sodium Chloride( NaCl). Going by the reaction,
AgF + NaCl= AgCl + NaF
Here, the color of AgCl is white, hence the solution cannot be AgCl.
Determination of NaCl
Determination of NaCl can be done by Mohr's Method or Volhard's method. But results in Volhard's method are more accurate . Its uses the method of back titration with Potassium Thiocynate which forms a AgCl precipitate . Prior to titration,excess AgNO3 ( The problem also has a clue that excess reagents are present in the lab ) is added to the NaCl solution so that all the Cl- ions react with Ag+. Fe3+ is then added as an indicator and the solution is titrated with KSCN to form a silver thiocyannite precipitate (AgSCN). Once all the silver has reacted, a slight excess of SCN- reacts with Fe3+ to form Fe(SCN)3 dark red complex. The concentration of Cl- is determined by subtracting the titer findings of Ag+ ions that reacted to form AgSCN from the Ag NO3 moles added to the solution. This is used because pH of the solution is acidic. If the pH of solution is basic, Mohr's method is used.
Reactions
Ag+ (aq)+ Cl-(aq) = AgCl(aq)
Ag+(aq) + SCN-(aq) = AgSCN(aq)
Fe3+(aq) + SCN-(aq) = [FeSCN]2- (aq)
Bromine is less electronegative than chlorine, yet methyl bromide and methyl chloride have very similar dipole moments. This is because the bond distance in methyl bromide is more due to the large size of bromine atom.
Dipole moment is calculated by multiplying the charge on the atom with the bond distance.
Answer:
1.044 g sample contains only vitamin C (C6H8O6) and sucralose (C12H19Cl3O8). When the sample is dissolved in water to a total volume of 33.0 mL, the osmotic pressure of the solution is 3.69 atm at 295 K.