What do we know that might help here ?
-- Temperature of a gas is actually the average kinetic energy of its molecules.
-- When something moves faster, its kinetic energy increases.
Knowing just these little factoids, we realize that as a gas gets hotter, the average speed of its molecules increases.
That's exactly what Graph #1 shows.
How about the other graphs ?
-- Graph #3 says that as the temperature goes up, the molecules' speed DEcreases. That can't be right.
-- Graph #4 says that as the temperature goes up, the molecules' speed doesn't change at all. That can't be right.
-- Graph #2 says that after the gas reaches some temperature and you heat it hotter than that, the speed of the molecules starts going DOWN. That can't be right.
--
Ng seismic and translational waves we get the law of michio kaku.
Answer:
30°
Explanation:
According to the second law of reflection, it States that the angle of incidence i is equal to the angle of reflection r.
The angle of incidence is known to be the angle between the incident ray and the normal.
The Angle of reflection is the angle between the reflected ray and the normal.
This normal ray is a ray that is perpendicular to the surface.
According to the question, if the beam of light is reflected off the surface and its angle of incidence is 30°, its angle of reflection will also be 30° i.e i=r = 30°
Luego de utilizar la fórmula del volumen de un líquido encontramos que si el acohol tiene 450 gramos entonces su volumen es de
La fórmula del volumen de la densidad de un líquido es la siguiente:
Densidad= Masa / Volumen
Volumen =Masa / Densidad
Es conocido que la densidad del alcohol es 789 kg/m³, y como sabemos por dato que tiene 450gr el siguiente paso es la sustitución:
Volumen=0.45/ 789
Volumen = 0,00057 m³
Answer:
<span>GPE=81000J or 81kJ</span>
Explanation
Potential Energy = mgh = 20 x 9.8 x ?
<span>To find H use one of the equation of motion </span>
<span>= [(90)^2 - 0 ] / 2(9.8) </span>
<span>Potential Energy = mgh = 20 x 9.8 x 8100 /2(9.8) = 81000 J</span>