Multiply 12 slices by 2/3:
12 x 2/3 = (12 x 2) /3 = 24/3 = 8
The answer is 8
To solve problem 19, we must remember the order of operations. PEMDAS tells us that we should simplify numbers in parentheses first, exponents next, multiplication and division after that, and finally addition and subtraction. Using this knowledge, we can begin to simplify the problem by working out the innermost set of parentheses:
36 / [10 - (3-1)²]
36 / [10 - (2)²]
Next, we should still simplify what is inside the parentheses but continue to solve the exponents (the next letter in PEMDAS).
36/ (10-4)
After that, we should compute the subtraction that is inside the parentheses.
36/6
Finally, we can solve using division.
6
Now, we can move onto problem 20:
1/4(16d - 24)
To solve this problem, we need to use the distributive property, which allows us to distribute the coefficient of 1/4 through the parentheses by multiplying each term by 1/4.
1/4 (16d-24)
1/4(16d) - 1/4(24)
Next, we can simplify further by using multiplication.
4d - 6
Therefore, your answer to problem 19 is 6 and the answer to problem 20 is 4d -6.
Hope this helps!
5x-2+3x=17+12x-23 combine like terms
8x-2=12x-6
-8x -8x
-2=4x-6
+6 +6
4=4x divide each side by 4
x=1
x is less than or equal to -4 or x is greater than or equal to 5
x <= -4 or x>= 5
There is no intersection of both inequalities when we graph it in number line So, we write the interval notation separately for each inequality
for x<=-4 , x starts at -4 and goes to -infinity because we have less than symbol. Also we have = sign so we use square brackets
Interval notation is (-∞ , -4]
for x>= 5 , x starts at 5 and goes to infinity because we have greater than symbol. Also we have = sign so we use square bracket at 5
Interval notation is [5 , ∞)
Now combine both notation by a 'U' symbol Union
(-∞ , -4] U [5 , ∞)
Answer:
57 °C.
Step-by-step explanation:
The formula that is used to convert temperature from Celsius (C) to Fahrenheit (F) is given by :
...(1)
If T = 134° F, we need to convert the temperature in Celsius.
Put F = 134, in equation (1)
So, the temperature on that day is 57 °C.