Step one calculate the moles of each element
that is moles= % composition/molar mass
molar mass of Ca = 40g/mol, S= 32 g/mol , O= 16 g/mol
moles of Ca = 29.4 /40g/mol=0.735 moles, S= 23.5/32 =0.734 moles, O= 47.1/16= 2.94 moles
calculate the mole ratio by dividing each mole with smallest mole that is 0.734
Ca= 0.735/0.734= 1, S= 0.734/0.734 =1, O = 2.94/ 0.734= 4
therefore the emipical formula = CaSO4
Answer:
Explanation:
The first one is CrO. The Chromium has the same charge as the oxygen so mol numbers are dropped.
The Second one is CrO2 The two oxygens have a charge of 2(-2) = -4. To balance this, the Chromium must have a charge of +4 Cr(Iv)O2
The third one is can be set up like this
Cr + 3(-2) = 0
Cr - 6 = 0
Cr = 6
Therefore the formula is Cr(vi)O3
The last one is a bit tricky. Follow this carefully. There are 2 Crs and 3Os.
The formula looks like this
2Cr + 3(-2) = 0
2Cr - 6 = 0
2Cr = 6
Cr = 3
The formula is Cr(iii)2 O3
Answer:
The correct answer to the following question will be "Particles".
Explanation:
- A particle seems to be a little component of something, it's little. When you're talking about a subatomic particle, that would be a structured user likely won't see because it's quite unbelievably thin, but it has a tiny mass as well as structural integrity. Such particles seem to be tinier than that of the particles or atoms.
- Such that the light which shines on the bit of metal could dissipate electrons, the particles seem to be more compatible with the light.
Answer: $109.5
Multiply $146 (original price) by 0.75 (the percentage) and there’s your answer!
<h3>
Answer:</h3>
SrCO₃ + H₂SO₄ → SrSO₄ + H₂O + CO₂
<h3>
Explanation:</h3>
We are required to complete the chemical equation given;
strontium carbonate + sulfuric acid → ??
- We know that, carbonates reacts with acids to form a salt, water and carbon dioxide.
- Strontium carbonate reacts with sulfuric acid to form strontium sulfate, water and carbon dioxide.
- Therefore, the equation for the reaction is;
SrCO₃ + H₂SO₄ → SrSO₄ + H₂O + CO₂
- The equation is balanced as the number of atoms of each element are equal on both sides of the equation.