Answer:581.87 K
Explanation:
Given
Sphere is melted to form a square
Let the radius of sphere be r and square has a side a
Therefore
Surface area of sphere
Surface area of cube
Total emmisive remains same
Thus
Answer:
<h2>103 Joules</h2>
Explanation:
In this problem we are required to find the potential energy possessed by the television
Given data
mass of television m = 15 kg
height added above the ground, h= 1-0.3 = 0.7 m
acceleration due to gravity g = 9.81 m/s^2
apply the formula for potential energy we have
P.E= m*g*h
P.E = 15*9.81*0.7 = 103 Joules
Answer: 37.981 m/s
Explanation:
This situation is related to projectile motion or parabolic motion, in which the travel of the ball has two components: <u>x-component</u> and <u>y-component.</u> Being their main equations as follows:
<u>x-component:
</u>
(1)
Where:
is the point where the ball strikes ground horizontally
is the ball's initial speed
because we are told the ball is thrown horizontally
is the time since the ball is thrown until it hits the ground
<u>y-component:
</u>
(2)
Where:
is the initial height of the ball
is the final height of the ball (when it finally hits the ground)
is the acceleration due gravity
Knowing this, let's start by finding from (2):
<u></u>
(3)
(4)
(5)
(6)
Then, we have to substitute (6) in (1):
(7)
And find :
(8)
(9)
(10)
On the other hand, since we are dealing with constant acceleration (due gravity) we can use the following equation to find the value of the ball's final velocity :
(11)
(12)
(13) This is the ball's final velocity, and the negative sign indicates its direction is downwards.
However, we were asked to find the <u>ball's final speed</u>, which is the module of the ball's final vleocity vector. This module is always positive, hence the speed of the ball just before it strikes the ground is 37.981 m/s (positive).
Answer:
g ≈ 7.4 m/s²
Explanation:
The acceleration due to gravity on planet XX is ...
g = GM/r² = (6.67·10^-11 × 4·10^22)/(6·10^5)^2
g ≈ 7.4 m/s²