Answer:
v_average = (d₂-d₁) / Δt
this average velocity is not necessarily the velocity of the extreme points,
Explanation:
To resolve the debate, it must be shown that the two have part of the reason, the space or distance between the two points divided by time is the average speed between the points.
v_average = (d₂-d₁) / Δt
this average velocity is not necessarily the velocity of the extreme points, in the only case that it is so is when there is no acceleration.
Therefore neither of them is right.
Answer:
160 kg
12 m/s
Explanation:
= Mass of first car = 120 kg
= Mass of second car
= Initial Velocity of first car = 14 m/s
= Initial Velocity of second car = 0 m/s
= Final Velocity of first car = -2 m/s
= Final Velocity of second car
For perfectly elastic collision
Applying in the next equation
Mass of second car = 160 kg
Velocity of second car = 12 m/s
car starts from rest
final speed attained by the car is
acceleration of the car will be
now the time to reach this final speed will be
so it required 1.39 s to reach this final speed
Explanation:
The acceleration due to gravity g is defined as
and solving for R, we find that
We need the mass M of the planet first and we can do that by noting that the centripetal acceleration experienced by the satellite is equal to the gravitational force or
The orbital velocity <em>v</em> is the velocity of the satellite around the planet defined as
where <em>r</em><em> </em>is the radius of the satellite's orbit in meters and <em>T</em> is the period or the time it takes for the satellite to circle the planet in seconds. We can then rewrite Eqn(2) as
Solving for <em>M</em>, we get
Putting this expression back into Eqn(1), we get
1. GPE - 40 * 2 * 10 = 800j