Answer:
1.1 m/s²
Explanation:
From the question,
F -mgμ = ma.................... Equation 1
Where F = applied force, m = mass of the apple cart, g = acceleration due to gravity, μ = coefficient of friction., a = acceleration of the apple cart.
Given: F = 115 N, m = 25 kg, μ = 0.35
Constant: g = 10 m/s²
Substitute these values into equation 2
115-(25×10×0.35) = 25×a
115-87.5 = 25a
25a = 27.5
a = 27.5/25
a = 1.1 m/s²
Answer:
His third law states that for every action (force) in nature there is an equal and opposite reaction. In other words, if object A exerts a force on object B, then object B also exerts an equal and opposite force on object A.
Vertical forces:
There is a force of 579N acting upward, and a force of 579N
acting downward.
The vertical forces are balanced ... they add up to zero ...
so there's no vertical acceleration.
Not up, not down.
Horizontal forces:
There is a force of 487N acting to the left, and a force of 632N
acting to the right.
The net horizontal force is
(487-left + 632-right) - (632-right - 487-right) = 145N to the right.
The net force on the car is all to the right.
The car accelerates to the right.
"Voltage" is the "pressure" that makes electrons want to leave where they are
and head in some direction, if there's conducting material in that direction.
"Current" is the rate at which they all migrate in that direction.
0.004 of something added to 0.12508 of the same thing
adds up to 0.12908 of it.
The thing could be a glass of water, a sheet of paper,
a pound of ground beef, a gallon of gas, or a snowball.
In this problem, it just happens to be a dm.