Answer:
A(45°) = 8*(1 + √2) = 19.314 in^2
Step-by-step explanation:
Given:-
- The area A of the opening is given as:
A(Θ) = 16 sin Θ • (cos Θ + 1)
Find:-
Assuming that the angle Θ = 45°, what is the area of the opening?
Solution:-
- We can use the expression given for Area A opening and substitute the value of bent-up angle of (Θ = 45°) and compute the value of A(Θ). So we have:
A(Θ) = 16*sin (Θ) • (cos (Θ) + 1)
- Plug in the value:
A(45°) = 16*sin (45°) • (cos (45°) + 1)
A(45°) = 16*( 1 / √2 ) • ( 1 / √2 + 1)
A(45°) = 16*( 1 / √2 ) • ( (1 + √2) / √2 )
A(45°) = 16*( (1 + √2) / 2 )
A(45°) = 8*(1 + √2) = 19.314 in^2