A fundamental force , is your answer .
Answer:B When one bulb burns out, all the others lights stay lit.
Explanation:
Answer:
a) see attached, a = g sin θ
b)
c) v = √(2gL (1-cos θ))
Explanation:
In the attached we can see the forces on the sphere, which are the attention of the bar that is perpendicular to the movement and the weight of the sphere that is vertical at all times. To solve this problem, a reference system is created with one axis parallel to the bar and the other perpendicular to the rod, the weight of decomposing in this reference system and the linear acceleration is given by
Wₓ = m a
W sin θ = m a
a = g sin θ
b) The diagram is the same, the only thing that changes is the angle that is less
θ' = 9/2 θ
c) At this point the weight and the force of the bar are in the same line of action, so that at linear acceleration it is zero, even when the pendulum has velocity v, so it follows its path.
The easiest way to find linear speed is to use conservation of energy
Highest point
Em₀ = mg h = mg L (1-cos tea)
Lowest point
Emf = K = ½ m v²
Em₀ = Emf
g L (1-cos θ) = v² / 2
v = √(2gL (1-cos θ))
1) 3 miles/Hour
The speed is defined as the distance covered divided by the time taken:
where
d = 1.5 mi is the distance
t = 0.5 h is the time taken
Substituting,
2) 1.34 m/s south
Velocity, instead, is a vector, so it has both a magnitude and a direction. We have:
is the displacement in meters
is the time taken in seconds
Substituting,
And the direction of the velocity is the same as the displacement, so it is south.
Answer:
you will be my girl my my girl myyyyy girllll you will be my girl my girl myyyy worldddddd you will be my. smokin ciggarets on teh roof you look so pretty and i love this view we fell inlove in october and thats why i love fall
Explanation: