Answer
12
Explanation
We have a balanced chemical equation from the question that depicts the formation of water.
2H2+O2-->2H2O,
We can clearly see from the equation that, the formation of 2 moles of water molecules requires the input of 2 moles of hydrogen and 1 mole of Oxygen.
So indirectly, it tells that the moles of water molecules will be double of the moles of Oxygen molecules used in the reaction.
So if we say that 6 moles of oxygen is used and the reaction is going in such a way that hydrogen is not a limiting reactant, then 12 moles of water will be produced.
Hope it help!
The volume of the buffer solution having a ph value is calculated by henderson's hasselbalch equation.
Buffer solution is water based solution which consists of a mixture containing a weak acid and a conjugate base of the weak acid. or a weak base and conjugate acid of a weak base.it is a mixture of weak acid and a base. The pH of the buffer solution is determined by the expression of the henderson hasselbalch equation.
pH=pKa + log [salt]/[acid]
Where, pKa =dissociation constant , A- = concentration of the conjugate base, [HA]= concentration of the acid. Here, a buffer solution contains 0.403m acetic acid and 250 ml is added in order to prepare a buffer with a ph of 4.750. Putting all the values in the henderson hasselbalch equation we find the pH of the buffer solution.
To learn more about hendersons hasselbalch equation please visit:
brainly.com/question/13423434
#SPJ4
Answer: The factor that lead to cyclopropane being less stable than the other cycloalkanes is the presence of a RING STRAIN.
Explanation:
In organic chemistry, the end carbon atoms of an open aliphatic chain can join together to form a closed system or ring to form cycloalkanes. Such compounds are known as cyclic compounds. Examples include cyclopropane, cyclobutane, cyclopentane and many among others.
Cyclopropane is less stable than other cycloalkanes mentioned above because of the presence of ring strain in its structural arrangement. The ring strain is the spatial orientation of atoms of the cycloalkane compounds which tend to give off a very high and non favourable energy. The release of heat energy which is stored in the bonds and molecules cause the ring to be UNSTABLE and REACTIVE.
The presence of the ring strain affects mainly the structures and the conformational function of the smaller cycloalkanes. cyclopropane, which is the smallest cycloalkane than the rest mentioned above, contains only 3 carbons with a small ring.
Answer:
option A is correct ( sodium, calcium and barium)
Explanation:
Given compounds:
Sodium chloride , calcium sulfide, barium oxide
We know that metals form positive ions. In order to solve the problem we must identify the metals from given compounds.
Na⁺Cl⁻
Ca²⁺S²⁻
Ba²⁺O²⁻
We can see that sodium, calcium and barium contain positive charges.
Thus option A is correct.
Because sodium have one valance electron. When it combine with chlorine sodium lose its one electron to complete the octet and chlorine accept it to complete its octet. Thus sodium form positive ion and chlorine form negative ion.
Similarly barium and calcium are present in group 2. Both have two valance electron. When they lose them cation are formed.
Other option are incorrect because,
Option B have sulfur and oxygen which are anion.
Option C have chlorine which is also anion
Option D have chlorine, sulfur and oxygen that are anions.
In cells use oxygen to release energy stored in sugars such as glucose. In fact, most of the energy used by the cells in your body is provided by cellular respiration. Just as photosynthesis occurs in organelles called chloroplasts, cellular respiration takes place in organelles called mitochondria.