Answer:
I'll do the first one for you. The reason why I'm not going to do the rest is because this is pretty simple stuff. I'll explain how I got the answer, please read it ^^ the rest of the problems should be a breeze.
1. 5.454285714285714 liters, or approx. 5.45 liters
Explanation:
P1V2 = P2V2
P1 refers to the original pressure. V1 refers to the original volume, or the amount of space the gas takes up.
P2 and V2 refer to the final pressure or volume, accordingly.
You insert the values into the equation, like so:
(8.3)(46) = (70)(x)
Now, multiply.
381.8 = 70x
Use inverse operations to find the value of x. Divide 381.8 by 70 to isolate x.
381.8/70 = x
5.454285714285714 = x
The volume of the gas when the pressure is increased to 70.0 mm Hg is approximately 5.45 liters. Don't forget about the units at the end, when you write your final answer.
Important! When pressure <em>increases</em>, volume <em>decreases, </em>and vice versa. Volume and pressure for gases are <em>inversely proportional. </em>So even though the pressure increased, that doesn't mean the volume increases, too.
<em>You can check your answers easily!</em>
Just multiply your final answer by its corresponding pressure or volume and compare it to the other. I hope that made sense. Like so:
5.454285714285714 x 70 = 381.8
8.3 x 46 = 381.8
That makes P1V2 DOES equal P2V2, and your answer is correct.
I hope this helped in time for you to submit it before the deadline! Good luck.
<em>Tips! </em>
For #2: I'm pretty sure the mentioning of the temperature (25.0 °C) doesn't matter. You can ignore it, it won't affect your calculations.
For #4: the standard pressure in mm Hg (millimeters of mercury) is 760 mm Hg. That's your P2.