<h2>
Answer:</h2>
The transformation that had taken place to map Quadrilateral ABCD to Quadrilateral A'B'C'D' is:
<em> A translation 10 units down followed by a translation 8 units to the right</em>
<h2>
Step-by-step explanation:</h2>
We are given a vertices of Quadrilateral ABCD as:
A(-6,4) , B(-6,6) , C(-2,6) , D(-4,4)
Now when translation is done 10 units down then the rule that follows this transformation is:
(x,y) → (x,y-10)
and coordinate of the transformed image will be:
A(-6,4) → A°(-6,-6)
B(-6,6) → B°(-6,-4)
C(-2,6) → C°(-2,-4)
D(-4,4) → D°(-4,-6)
Now when this image is translated 8 units to the right we obtain image A'B'C'D' and the coordinates of the transformed image follows the rule:
(x,y) → (x+8,y)
Hence,
A°(-6,-6) → A'(2,-6)
B°(-6,-4) → B'(2,-4)
C°(-2,-4) → C'(6,-4)
D°(-4,-6) → D'(4,-6)
Hence,
A(-6,4) → A'(2,-6)
B(-6,6) → B'(2,-4)
C(-2,6) → C'(6,-4)
D(-4,4) → D'(4,-6)