Answer:
Explained
Explanation:
Resistance R in a current flow through an object is given by
ρ = resistivity of the material
L= length of the object
A= area of cross section
clearly resistance is directly dependent on length of the object.This means greater the length larger will be resistance to current.
thermal resistance R_th is given by
L= length of the object
A= area of cross section
K = Conductivity of the material
thermal resistance is also is directly dependent on length of the object.This means greater the length larger will be resistance to current.
Answer:
D. Histogram.
Explanation:
A histogram with equal intervals is suitable here.
Answer:
A wave is a vibration in mediun tbat carries energy from one place to another.
Explanation:
Answer:
Explanation:
Total resistance in the circuit
= EMF / current in the circuit
= 12 / .969
= 12.383 ohm
This resistance consists of 5 identical resistances in series
resistance of each resistor
= 12.383 / 5
= 2.476 ohm .
potential difference on each
= current x resistance of each
= .969 x 2.476
= 2.399 V
= 2.4 V
Answer:
128 m
Explanation:
From the question given above, the following data were obtained:
Horizontal velocity (u) = 40 m/s
Height (h) = 50 m
Acceleration due to gravity (g) = 9.8 m/s²
Horizontal distance (s) =?
Next, we shall determine the time taken for the package to get to the ground.
This can be obtained as follow:
Height (h) = 50 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
50 = ½ × 9.8 × t²
50 = 4.9 × t²
Divide both side by 4.9
t² = 50 / 4.9
t² = 10.2
Take the square root of both side
t = √10.2
t = 3.2 s
Finally, we shall determine where the package lands by calculating the horizontal distance travelled by the package after being dropped from the plane. This can be obtained as follow:
Horizontal velocity (u) = 40 m/s
Time (t) = 3.2 s
Horizontal distance (s) =?
s = ut
s = 40 × 3.2
s = 128 m
Therefore, the package will land at 128 m relative to the plane