Answer:
168.57 mV
Explanation:
Initial magnetic flux = BA , B magnetic field and A is area of loop
= .35 x 3.14 x .37²
= .15 Weber
Final magnetic flux
= - .2 x 3.14 x .37²
= - .086 Weber
change in flux
.15 + .086
= .236 Weber
rate of change of flux
= .236 / 1.4
= .16857 V
= 168.57 mV
When somebody hands you a Celsius°, it's easy to find the equivalent Fahrenheit°.
Fahrenheit° = (1.8 · Celsius°) + 32° .
So 100°C works out to 212°F.
It's also easy to find the equivalent Kelvin. Just add 273.15 to the Celsius.
So now you can see that 100°C is equal to A and D,
and it's less than B .
The only one it's greater than is C .
A transverse wave is a wave where the particles in the medium move perpendicular (at right angles) to the direction of the source or its propagation (think of a snake slithering through grass) an example of a transverse wave could be a light wave. Light waves for instance don’t need a medium in order to propagate but transverse waves in general do need a medium.
The speed at which sound travels through the gas in the tube is 719.94m/s
<u>Explanation:</u>
Given:
Frequency, f = 11999Hz
Wavelength, λ = 0.03m
Velocity, v = ?
Sound speed in the tube is calculated by multiplying the frequency v by the wavelength λ.
As the sound loudness changed from a maximum to a minimum, then we know the sound interference in the case changed from constructive interference (the two sound waves are in phase, i.e. peaks are in a line with peaks and so the troughs), to a destructive interference (peaks coinciding with troughs). The least distance change required to cause such a change is a half wavelength distance, so:
λ/2 = 0.03/2
λ = 0.06m
We know,
v = λf
v = 0.06 X 11999Hz
v = 719.94m/s
Therefore, the speed at which sound travels through the gas in the tube is 719.94m/s