Answer:
C) 64lb
Explanation:
use the linearity method to find the weight of nadir on another planet, it is applied as follows.
Nadir Weight in earth ⇒ Nadir weight in another planet
Vince Weigh in eart ⇒ X
our goal is to find the weight of vince in another planet (X), for this we multiply the diagonal that continents the data and divide among the remaining
140pounds ⇒ 56lb
160pounds ⇒ X
X=
Vince weigh on the other planet is C) 64lb
Answer:
The dart with the small mass will travel the farthest distance.
Explanation:
Acceleration is proportional to force times mass, and inertia is proportional to mass. Inertia is the reluctance of a moving body to stop, and a stationary body to start moving (inertia increses with mass). Assuming they both have the same aerodynamic design, and that they are both launched with the same force applied for the same time duration, the dart with less small mass will accelerate faster than the big mass dart. From this we can see that the small dart will have covered a longer distance before the effect of the force stops, when compared to the more massive dart.
It’s a vector quantity, which means it possesses both magnitude and direction. So the SI unit would be B)kg•m/s
Answer: magnitude of applied force is FA = mg + F
Where F is the resultant force downward that the rope moves with
Explanation:
Force downwards F is,
F = FA - T
T is the upwards tension force on the rope
FA is the actual applied force in pulling the rope down.
Therefore, T = FA - F .....equ. (1)
For the box to move up with force ma ( it's mass times its acceleration upwards) upwards tension on the roap must exceed its own weight mg ( it's mass times acceleration due to gravity 9.8m/s^2)
Therefore, ma = T - mg
T = ma + mg ..... equ. (2)
Equating equ. 1 and 2
T = FA - F = ma + mg
Therefore FA = ma + mg + F
But at constant velocity a = 0
Magnitude of applied force becomes
FA = mg + F
See image below
Answer:
13.33 or 13 1/3m/s (meters per second)
Explanation:
In physics, we use the basic units of meters and seconds. So first convert (km) into meters (m) and also hours and minutes into seconds (s). We end up with 120000m and 9000s. Then divide the 120000m by the 9000s and you end up with 13.33 or 13 1/3 m/s.