Answer:
the energy absorbed is 4.477 x 10⁶ J
Explanation:
mass of the liquid, m = 13 kg
initial temperature of the liquid, t₁ = 18 ⁰C
final temperature of the liquid, t₂ = 100 ⁰C
specific heat capacity of water, c = 4,200 J/kg⁰C
The energy absorbed is calculated as;
H = mcΔt
H = mc(t₂ - t₁)
H = 13 x 4,200(100 - 18)
H = 4.477 x 10⁶ J
Therefore, the energy absorbed is 4.477 x 10⁶ J
The turns ratio is the factor that determines voltage andcurrent. In order to have the same current across the resistorin the primary as the resistor in the secondary, then:--N(p) = Primary turnsN(s) = Secondary turnsR(2) = Primary resistorR(1) = Secondary resistor--R(2)/R(1) = N(p)/N(s)R(2) = R(1)*(N(p)/N(s))--If arbitrary values are plugged in, you will see that this step up transformer will require 2x the resistance required in the secondary, R(1), to obtain the same current. Thus R(2) will be 1/2 the value of R(1). This is due to the stepped up voltage in the secondary.
Wind and Waves are the 2 main forms of erosion on coastline cliffs
Answer:
103.1 V
Explanation:
We are given that
Initial circumference=C=168 cm
Magnetic field,B=0.9 T
We have to find the magnitude of the emf induced in the loop after exactly time 8 s has passed since the circumference of the loop started to decrease.
Magnetic flux=
Circumference,C=
cm
When t=0
E=
t=8 s
B=0.9
The velocity of the ball when it reaches the ground is equal to B. 68.6 m/s. This value was obtained from the formula Vf = Vi + at. Vf is the final velocity. Vi is the initial velocity. The acceleration is "a", while the time of travel is "t". The solution is:
<span>Vf = Vi + at
</span>Vf = 0 + (-9.8 m/s^2) (7 s)
Vf = -68.6 m/s
The negative sign denotes the direction of the ball.