Answer:
Approximately (assuming that the projectile was launched at angle of above the horizon.)
Explanation:
Initial vertical component of velocity:
.
The question assumed that there is no drag on this projectile. Additionally, the altitude of this projectile just before landing is the same as the altitude at which this projectile was launched: .
Hence, the initial vertical velocity of this projectile would be the exact opposite of the vertical velocity of this projectile right before landing. Since the initial vertical velocity is (upwards,) the vertical velocity right before landing would be (downwards.) The change in vertical velocity is:
.
Since there is no drag on this projectile, the vertical acceleration of this projectile would be . In other words, .
Hence, the time it takes to achieve a (vertical) velocity change of would be:
.
Hence, this projectile would be in the air for approximately .
Answer:
17.64 km/h
Explanation:
mass of car, m = 1000 kg
Kinetic energy of car, K = 1.2 x 10^4 J
Let the speed of car is v.
Use the formula for kinetic energy.
By substituting the values
v = 4.9 m/s
Now convert metre per second into km / h
We know that
1 km = 1000 m
1 h = 3600 second
So,
v = 17.64 km/h
Thus, the reading of speedometer is 17.64 km/h.
Answer:
Yes
Explanation:
There are so many planets out there that there must be habitable planets if not in our galaxy but the Universe.
Although the chances of advanced life are slim, small primitive life like microbes or sea life may still exist.
Answer:
C
Explanation:
Formula E=F/C also E=V/d
In this case use the second formula; E=V/d
Data given; E=4N/C d=8m
So v=E X d
V=4x8=32V
k.e=eV= 2X32=64eV
Explanation:
Using Kinematics,
we have a = (v - u) / t.
Therefore a = (36m/s - 22m/s) / 5s = 2.8m/s².