1. If the line that we are searching for is perpendicular to the line y = -4x, this means that the gradient of our line and the gradient of the perpendicular line will multiply to give -1. Thus if we call the gradient of our line m, then:
m*(-4) = -1
-4m = -1
m = 1/4
2. Since we know that m = 1/4 and we have a point (2,6) on our line, we can use the formula y - y1 = m(x - x1) to find the equation of our line, where (x1, y1) is the coordinates of a point on the line. Thus:
y - y1 = m(x - x1)
y - 6 = (1/4)(x - 2)
y - 6 = (1/4)x - 2/4 (Expand (1/4)(x - 2))
y = (1/4)x - 1/2 + 6 (Simplify 2/4 and add 6 to each side)
y = (1/4)x + 11/2 (Evaluate -1/2 + 6)
Slope-intercept form is given by y = mx + c. As our equation is already in this form, there is nothing more to do. Thus, the answer is y = (1/4)x + 11/2