Answer:
High specific heat -> takes more energy to raise/lower object's temperature
Low specific heat -> takes less energy to raise/lower object's temperature
Explanation:
The specific heat capacity is the amount of heat required to raise the temperature of something per unit of mass.
A high specific heat value for an object means it takes more energy to raise or lower that object's temperature. A low specific heat value for an object means it does not take very much energy to heat or cool that object.
Answer:
volume of the bubble just before it reaches the surface is 5.71 cm³
Explanation:
given data
depth h = 36 m
volume v2 = 1.22 cm³ = 1.22 × m³
temperature bottom t2 = 5.9°C = 278.9 K
temperature top t1 = 16.0°C = 289 K
to find out
what is the volume of the bubble just before it reaches the surface
solution
we know at top atmospheric pressure is about P1 = Pa
so pressure at bottom P2 = pressure at top + ρ×g×h
here ρ is density and h is height and g is 9.8 m/s²
so
pressure at bottom P2 = + 1000 × 9.8 ×36
pressure at bottom P2 =4.52 × Pa
so from gas law
here p is pressure and v is volume and t is temperature
so put here value and find v1
V1 = 5.71 cm³
volume of the bubble just before it reaches the surface is 5.71 cm³
Answer:
violet
Explanation:
violet has shortest wavelength
Hi!
The answer would be A. Isobaric Process
<h3>Explanation:</h3>
Isobaric process is a process where the pressure inside a system remains unchanged. In the Pressure Volume graph given, you can see that the pressure (y axis) remains constant with an increasing volume ( x axis). An example of this would be heating a container with a movable piston. Now, the degree of pressure is dependent on the frequency of collisions of particles inside a system on the walls. If this frequency changes, the pressure changes (proportionally). In our example, heating a container with a movable piston results in the particles inside the container to gain kinetic energy and move faster, meaning an increased frequency of collisions (higher pressure), but at the system time the increase in pressure results in the piston being pushed outwards, causing the volume of the container to increase. This results in decreased frequency of collision of the particles with the walls of the container (lesser pressure). This results in the a zero net effect on the pressure.
Hope this helps!
Two atoms of the same element can have different numbers of protons
false
diff nos neutrons ... isotopes,
diff protons ... diff elements