Answer:
121
Step-by-step explanation:
cause if its on the oppsite side its going to be the same number
Answer:
K'= (-1,-1)
J'= (-1,-5)
L'= (0,-3)
Step-by-step explanation:
What you do here is, input the (x,y) coordinates into the translation.
For example, the original point K is (-3,5). Insert this into the translation.
(-3,5) → (-3+2, 5-8) = (-1,-3)
Repeat this for the next coordinates of L and J.
J= (-3,3)
(-3,3) → (-3+2, 3-8) = (-1,-5)
L= (-2, 5)
(-2, 5) → (-2+2, 5-8) = (0,-3)
Answer:
807.8 in^2
Step-by-step explanation:
The total area of the box is the sum of the areas of all faces of the box. The top, bottom, front, and back faces are rectangles 18 in long. The end faces each consist of a rectangle and a triangle. We can compute the sum of these like this:
The areas of top, bottom, front, and back add up to be 18 inches wide by the length that is the perimeter of the end: 2·5in +2·8 in + 9.6 in = 35.8 in. That lateral area is ...
(18 in)(35.6 in) = 640.8 in^2
The area of the triangle on each end is equivalent to the area of a rectangle half as high, so we can compute the area of each end as ...
(9.6 in)(8.7 in) = 83.52 in^2
Then the total area is the lateral area plus the area of the two ends:
640.8 in^2 + 2·83.52 in^2 = 807.84 in^2 ≈ 807.8 in^2
Answer:
<h2>
$26.25</h2>
<em><u>Solving steps:</u></em>
<em>Question:</em> <u>Sam had some money in his pocket, and he found another $6. 50 in his dresser drawer. He then had a total of $19. 75. Let p represent the amount of money Sam had in his pocket. Which equation can you use to find the amount of money Sam had in his pocket? How much money did Sam have in his pocket?.</u>
<em>Find: </em><em> </em><u>How much money did Sam have in his pocket?.</u>
<em>Solution:</em><em> </em>Let the equation be
<h3><em>=> P = T </em><em>+</em><em>F</em></h3>
<u>p represent amount of money</u>
<u>p represent amount of moneyt represent total</u>
<u>p represent amount of moneyt represent totalf represent money found</u>
<h3>
<em>=> P = T </em><em>+</em><em> </em><em>F</em></h3>
<u>insert the values</u>
<h3><em>=> P = $19.75 </em><em>+</em><em> </em><em>$6.50</em></h3>
add<u> 19.75 from 6.50 </u>
<h3><em>=> P = </em><em> </em><em>26.25</em></h3>
<em><u>THEREFORE THE AMOUNT OF MONEY </u></em><em><u>SAM</u></em><em><u> HAVE IN HIS POCKET</u></em><em><u> IS ABOUT</u></em><em><u> </u></em><em><u> </u></em><em><u>$</u></em><em><u>26.25</u></em>
Answer:
They can be seated in 120 differents ways.
Step-by-step explanation:
Taking into account that there are 3 couples and every couple has an specific way to sit, for simplify the exercise, every couple is going to act like 1 option and it's going to occupy 1 Place. If this happens we just need to organize 5 options (3 couples and 2 singles) in 5 Places (3 for a couple and 2 for the singles)
It means that now there are just 5 Places in the row and 5 options to organized. So the number of ways can be calculated using a rule of multiplication as:
<u> 5 </u>*<u> 4 </u>* <u> 3 </u> * <u> 2 </u> * <u> 1 </u> = 120
1st place 2nd Place 3rd place 4th Place 5th Place
Because we have 5 options for the 1st Place, the three couples and the 2 singles. Then, 4 options for the second Place, 3 options for the third place, 2 for the fourth place and 1 option for the 5th place.
Finally, they can be seated in 120 differents ways.