Answer:
froth flotation is a technique commonly used in the mining industry. In this technique, particles of interest are physically separated from a liquid phase as a result of differences in the ability of air bubbles to selectively adhere to the surface of the particles, based upon their hydrophobicity.
Explanation:
Froth floatation method is commonly used to concentrate sulphide ore such as galena (PbS), zinc blende (ZnS) etc. (ii) In this method, the metaalic ore particles which are perferentially wetted by oil can be separated from gangue. (iii) In this method, the crushed ore is suspended in water and mixed with frothing agent such as pine oil, eucalyptus oil etc. (iv) A small quantity of sodium ethyl xanthate which act as a collector is also added. (v) A froth is generated by blowing air through this mixture. (vi) The collector molecules attach to the ore particles and make them water repellent. (vii) As a result, ore parrticles, wetted by the oil, rise to the surface along with the froth. (viii) The froth is skimmed off and dried to recover the concentration ore. (ix) The gangue particles that are preferentially wetted by water settle at the bottom.
Answer:
21.86582KJ
Explanation:
The graphical form of the Arrhenius equation is shown on the image attached. Remember that in the Arrhenius equation, we plot the rate constant against the inverse of temperature. The slope of this graph is the activation energy and its y intercept is the frequency factor.
Applying the equation if a straight line, y=mx +c, and comparing the given equation with the graphical form of the Arrhenius equation shown in the image attached, we obtain the activation energy of the reaction as shown.
Metals :-
Group 1A - Alkali metals ( highly reactive metals)
Non-metals :-
Group 17 - Halogens ( highly reactive non-metals )
The computation for this problem is:
(1.55x10^4 / 1.0x10^3) x 19.8 mm Hg
= 15.5 x 19.88 mm Hg
= 308.14 mm Hg decrease
= 308.14 x 0.05 C = 15.407 deg C
deduct this amount to 100
100 – 15.407 = 84.593 C
ANSWER: 85 deg C (rounded to 2 significant figures)
A b A or just the person above me said