4Al(s) + 3O2(g) --> 2Al2O3(s) This is the balanced.
From the equation:
4 moles of Al required 3 moles of O2 to produce 2 moles of Al2O3
3 moles of O2 reacted with 4 moles of Al to produce 2 moles of Al2O3
1 mole of O2 reacted with 4/3 moles of Al to produce 2/3 moles of Al2O3 (Divide by 3)
4.5 moles of O2 reacted with (4/3 *4.5) moles of Al to produce (2/3*4.5) moles of Al2O3
4.5 moles of O2 reacted with 6moles of Al to produce 3moles of Al2O3
(3) is the answer. 6 mol of Al.
The periodic table of the elements are describe the electronic configuration of the elements on which the properties of the elements depends. Among the given groups only metal, non-metal and semi-metal group are the part of periodic table. The metallic property depends upon the binding energy of the electrons with the nucleus. Thus the elements which have the valence electrons more near to the nucleus that is s-block elements are more metallic in nature. On the other hand the elements which have the valence electrons far from the nucleus are more non-metallic in nature like p-block elements. However the binding energy or the attraction of the outermost electrons to the nucleus depends not only its valence electrons position but also some other factors like shielding effect, effective nuclear charge etc.
The elements which are in between the metals and non-metals can be classified as semi-metals.
Although the conductivity of a material is an inherent property of the metals but sometime the nonmetals or semi-metals are also behave like a conductor due to presence of the other elements, thus it cannot be a p[property of the periodic table. Similarly acidity, flammable gases are not part of the periodic table.
Answer:
Explanation: In a chemical formula, the symbols for each element in the compound are followed by subscripts that tell us how many of that element are in the compound. The subscripts that follow each element's symbol indicate how many of that element are in the compound. Notice how H is located in more than one place.
Explanation:
When it comes to physical changes like phase changes, there are two types of heat energy: sensible heat and latent heat. Sensible heat is the heat absorbed/released when you heat the substance but it doesn't change phase. An example would be heating lukewarm water. The substance is liquid all throughout. Latent heat, on the other hand, is the heat absorbed/released when there is a phase change. An example would be boiling water, because it changes liquid to vapor.
Hence, for freezing liquid, you use the latent heat, specifically the heat of fusion. The answer should be
2.5 g * (1 mol/18.02 g) * 6.03 kJ/mol = 0.84 kJ/mol
The answer is not in the choices. You only use Hvap if you boil water.