Constant velocity means moving in a straight line at a speed that doesn't change. If the object is moving with constant velocity then its acceleration is zero. Acceleration is the rate at which velocity is changing.
Protons and neutrons are packed together in a very small region called nucleus. Protons are positively charged and we know that like charges repel. Then how is it that protons are not repelling each other and flying away from nucleus?
You may think that gravitational force is holding all the protons together but it is not so. Gravitational force is many times weaker than repulsive force.
It is actually strong force which holds proton together. At this short distance, strong force comes into play and is several times stronger than the repulsive force.
Answer:
A substance made of two or more types of atoms
Explanation:
Answer:
v₃ = 3.33 [m/s]
Explanation:
This problem can be easily solved using the principle of linear momentum conservation. Which tells us that momentum is preserved before and after the collision.
In this way, we can propose the following equation in which everything that happens before the collision will be located to the left of the equal sign and on the right the moment after the collision.
where:
m₁ = mass of the car = 1000 [kg]
v₁ = velocity of the car = 10 [m/s]
m₂ = mass of the truck = 2000 [kg]
v₂ = velocity of the truck = 0 (stationary)
v₃ = velocity of the two vehicles after the collision [m/s].
Now replacing:
Answer:
Explanation:
The form of Newton's 2nd Law that we use for this is:
F - f = ma where F is the Force pulling the mass down the ramp forward, f is the friction trying to keep it from moving forward, m is the mass and a is the acceleration (and our unknown).
We know mass and we can find f, but we don't have F. But we can solve for that by rewriting our main equation to reflect F:
That's everything we need.
w is weight: 6.0(9.8). Filling in:
6.0(9.8)sin20 - .15(6.0)(9.8) = 6.0a and
2.0 × 10¹ - 8.8 = 6.0a and
11 = 6.0a so
a = 1.8 m/s/s