In this problem, we can imagine that all the points
connect to form a triangle. The three point or vertices are located on the
pitcher mount, the home plate and where the outfielder catches the ball. So in
this case we are given two sides of the triangle and the angle in between the
two sides.
<span>With the following conditions, we can use the cosine law
to solve for the unknown 3rd side. The formula is:</span>
c^2 = a^2 + b^2 – 2 a b cos θ
Where,
a = 60.5 ft
b = 195 ft
θ = 32°
Substituting the given values:
c^2 = (60.5)^2 + (195)^2 – 2 (60.5) (195) cos 32
c^2 = 3660.25 + 38025 – 20009.7
c^2 = 21,675.56
c = 147.23 ft
<span>Therefore the outfielder throws the ball at a distance of
147.23 ft towards the home plate.</span>
P(most favorable outcome) = 1 -(0.03 +0.16 -0.01) = 0.82
_____
"repair fails" includes the "infection and failure" case, as does "infection". By adding the probability of "repair fails" and "infection", we count the "infection and failure" case twice. So, we have to subtract the probability of "infection and failure" from the sum of "repaire fails" and "infection" in order to count each bad outcome only once.
The probability of a good outcome is the complement of the probability of a bad outcome.
Answer:
y = 9
Step-by-step explanation:
-2y + 6 = -12
-6 -6
-2y = -18
divide both sides by -2
y = 9
Hope this Helps!!!
Such a ray that divides an angle into two equal angles is called an angle bisector.
Likewise, two rays that divide an angle into three congruent angles are called angle trisectors. Figure %:
An angle bisected and trisected On the left, angle ABC is bisected by the ray BD.
Credits to google.
In short, no.
I always use Socratic see if that’ll help