182 games
24 on each shelf
basicaaly
x shelves is more than or equal to 182 games
1 shelf=24
x times 24>182
divide both sides by 24
x>7 and 4/24
x has to be a whole number since you can't have fractional shelves
you have to have more shelves since less shelves won't allow you to carry all of them
round up
7 and something rounded u is 8
8 shelves (if you are a weird store that has fractional shelves then the answer is 7 and 1/6 shelves)
(1)Identify the surface whose equation is r = 2cosθ by converting first to rectangular coordinates...(2)Identify the surface whose equation is r = 3sinθ by converting first to rectangular coordinates...(3)Find an equation of the plane that passes through the point (6, 0, −2) and contains the line x−4/−2 = y−3/5 = z−7/4...(4)Find an equation of the plane that passes through the point (−1,2,3) and contains the line x+1/2 = y+2/3 = z-3/-1...(5)Find a) the scalar projection of a onto b b) the vector projection of a onto b given = 〈2, −1,3〉 and = 〈1,2,2〉...(6)Find a) the scalar projection of a onto b b) the vector projection of a onto b given = 〈2,1,4〉 and = 〈3,0,1〉...(7)Find symmetric equations for the line of intersection of the planes x + 2 y + 3z = 1 and x − y + z = 1...(8)Find symmetric equations for the line of intersection of the planes x + y + z = 1 and x + 2y + 2z = 1...(9)Write inequalities to describe the region consisting of all points between, but not on, the spheres of radius 3 and 5 centered at the origin....(10)Write inequalities to describe the solid upper hemisphere of the sphere of radius 2 centered at the origin....(11)Find the distance between the point (4,1, −2) and the line x = 1 +t , y = 3 2−t , z = 4 3−t...(12)Find the distance between the point (0,1,3) and the line x = 2t , y = 6 2−t , z = 3 + t...(13)Find a vector equation for the line through the point (0,14, −10) and parallel to the line x=−1+2t, y=6-3t, z=3+9t<span>...</span>