Complete Question:
A 10 kg block is pulled across a horizontal surface by a rope that is oriented at 60° relative to the horizontal surface.
The tension in the rope is constant and equal to 40 N as the block is pulled. What is the instantaneous power (in W) supplied by the tension in the rope if the block when the block is 5 m away from its starting point? The coefficient of kinetic friction between the block and the floor is 0.2 and you may assume that the block starting at rest.
Answer:
Power = 54.07 W
Explanation:
Mass of the block = 10 kg
Angle made with the horizontal, θ = 60°
Distance covered, d = 5 m
Tension in the rope, T = 40 N
Coefficient of kinetic friction,
Let the Normal reaction = N
The weight of the block acting downwards = mg
The vertical resolution of the 40 N force,
Power,
Answer:
this statement describes meteor's velocity,
because velocity is a vector quantity which has both magnitude as well as a specific direction and here the meteor's direction is specified in the statement hence we conclude that this statement describes meteor's velocity as well as speed too.
The X-axis of the H-R Diagram indicates the star's surface temperature in degrees Kelvin. The Y-axis, on the other hand, indicates luminosity, or brightness.
Main sequence refers to a roughly diagonal, slightly S-curved line stretching between the upper-left and lower-right corners on which main sequence stars chart. They maintain a predictable relationship between luminosity and temperature: the brighter, the hotter. The upper-right quadrant of the H-R diagram is home to newly discovered red giants while the lower-left quadrant of the H-R Diagram belongs almost exclusively to white dwarfs.
Answer:
if im not mistaken i think its d let me know if correct plz