WORKDONE = FORCE * DISPLACEMENT
W=F*S
HERE, THE FORCE = 100N AND DISTANCE = 20M
WORKDONE = 100*20
WORKDONE=2000
ITS S.I UNIT IS JOULE OR J
SO, 2000J
Answer:
The explosive force experienced by the shell inside the barrel is 23437500 newtons.
Explanation:
Let suppose that shells are not experiencing any effect from non-conservative forces (i.e. friction, air viscosity) and changes in gravitational potential energy are negligible. The explosive force experienced by the shell inside the barrel can be estimated by Work-Energy Theorem, represented by the following formula:
(1)
Where:
- Explosive force, measured in newtons.
- Barrel length, measured in meters.
- Mass of the shell, measured in kilograms.
, - Initial and final speeds of the shell, measured in meters per second.
If we know that , , and , then the explosive force experienced by the shell inside the barrel is:
The explosive force experienced by the shell inside the barrel is 23437500 newtons.
Answer:
a little
Explanation:
First of all, it's not how you spell "tyres", it is tires.
Second of all, you already know the Mass so what you need to find out now is contact the road. You Know that your number and letter are squared so that would turn into 6m x 2.4. Then you do the math do continue on to finish it. Have a great day!! Good luck with the answer!!
Answer:
C.Supersaturated
Explanation:
There are three types of solution:
<u>SATURATED SOLUTION</u>:
It is the solution that contains maximum amount of solute dissolved in a solution in normal conditions.
<u>UNSATURATED SOLUTION</u>:
It is the solution that contains less than the maximum amount of solute dissolved in a solution in normal conditions. It has space for more solute to be dissolved in it.
<u>SUPERSATURATED SOLUTION:</u>
It contains more than the maximum amount of solute dissolved in it. Such a solution has no capacity to dissolve any more solute under any conditions.
Since the sugar is no more dissolving in the tea and has settled down. Therefore, the solution is:
<u>C.Supersaturated</u>
travel through a vacuum at the speed of light. Other waves need a medium; sound waves need molecules that vibrate.