<em>Key points:</em>
<em>Transcription is the first step in gene expression. It involves copying a gene's DNA sequence to make an RNA molecule.</em>
<em>Transcription is performed by enzymes called RNA polymerases, which link nucleotides to form an RNA strand (using a DNA strand as a template).</em>
<em>Transcription has three stages: initiation, elongation, and termination.</em>
<em>In eukaryotes, RNA molecules must be processed after transcription: they are spliced and have a 5' cap and poly-A tail put on their ends.</em>
<em>Transcription is controlled separately for each gene in your genome.</em>
Overview of transcription
Transcription is the first step in gene expression, in which information from a gene is used to construct a functional product such as a protein. The goal of transcription is to make a RNA copy of a gene's DNA sequence. For a protein-coding gene, the RNA copy, or transcript, carries the information needed to build a polypeptide (protein or protein subunit). Eukaryotic transcripts need to go through some processing steps before translation into proteins.
In transcription, a region of DNA opens up. One strand, the template strand, serves as a template for synthesis of a complementary RNA transcript. The other strand, the coding strand, is identical to the RNA transcript in sequence, except that it has uracil (U) bases in place of thymine (T) bases.
Example:
Coding strand: 5'-ATGATCTCGTAA-3'
Template strand: 3'-TACTAGAGCATT-5'
RNA transcript: 5'-AUGAUCUCGUAA-3'
For a protein-coding gene, the RNA transcript contains the information needed to synthesize a polypeptide (protein or protein subunit) with a particular amino acid sequence. In this case:
Stages of transcription
Transcription of a gene takes place in three stages: initiation, elongation, and termination. Here, we will briefly see how these steps happen in bacteria. You can learn more about the details of each stage (and about how eukaryotic transcription is different) in the stages of transcription article.
Initiation. RNA polymerase binds to a sequence of DNA called the promoter, found near the beginning of a gene. Each gene (or group of co-transcribed genes, in bacteria) has its own promoter. Once bound, RNA polymerase separates the DNA strands, providing the single-stranded template needed for transcription.
The promoter region comes before (and slightly overlaps with) the transcribed region whose transcription it specifies. It contains recognition sites for RNA polymerase or its helper proteins to bind to. The DNA opens up in the promoter region so that RNA polymerase can begin transcription.
The promoter region comes before (and slightly overlaps with) the transcribed region whose transcription it specifies. It contains recognition sites for RNA polymerase or its helper proteins to bind to. The DNA opens up in the promoter region so that RNA polymerase can begin transcription.
Elongation. One strand of DNA, the template strand, acts as a template for RNA polymerase. As it "reads" this template one base at a time, the polymerase builds an RNA molecule out of complementary nucleotides, making a chain that grows from 5' to 3'. The RNA transcript carries the same information as the non-template (coding) strand of DNA, but it contains the base uracil (U) instead of thymine (T). [What do 5' and 3' mean?]