Answer:
h = 36.4 cm
Explanation:
given,
spring constant = 2.5 x 10⁴ N/m
compressed distance = 11.2 cm = 0.112 m
mass of the child = 44 kg
maximum height = ?
by energy of conservation
h = 0.364 m
h = 36.4 cm
Complete Question
An athlete at the gym holds a 3.0 kg steel ball in his hand. His arm is 70 cm long and has a mass of 4.0 kg. Assume, a bit unrealistically, that the athlete's arm is uniform.
What is the magnitude of the torque about his shoulder if he holds his arm straight out to his side, parallel to the floor? Include the torque due to the steel ball, as well as the torque due to the arm's weight.
Answer:
The torque is
Explanation:
From the question we are told that
The mass of the steel ball is
The length of arm is
The mass of the arm is
Given that the arm of the athlete is uniform them the distance from the shoulder to the center of gravity of the arm is mathematically represented as
=>
=>
Generally the magnitude of torque about the athlete shoulder is mathematically represented as
=>
=>
Answer:
10.16 degrees
Explanation:
Apply Snells Law for both wavelenghts
\(n_{1}sin\theta_{1} = n_{2}sin\theta_{2}\)
For red
(1.620)(sin 25.5) = (1)(sin r)
For red, the angle is 35.45degrees
For violet
(1.660)(sin 25.5) = (1)(sin v)
For violet, the angle is 45.6 degrees
The difference is 45.6- 35.45 = 10.16 degrees
Answer:
No, they will not change.
Explanation:
The object that goes through chemical change, changes completely to where you can not change it back to its original form. Physical change you can undo