0.150 M AgNO3 = x mol / 0.200 Liters
x mol = 0.03 mol AgNO3
0.03 mol AgNO3 (169.9g AgNO3 / 1 mol AgNO3) We are converting moles to grams here with stoichiometry.
Final answer = 5.097 grams, but if you want it in terms of sig figs then it is 5.09 grams.
Answer:
what are the roles of minerals in maintaning homeostasis?
Heat
gained in a system can be calculated by multiplying the given mass to the
specific heat capacity of the substance and the temperature difference. It is
expressed as follows:<span>
Heat = mC(T2-T1)
When two objects are in contact, it should be that the heat lost is equal to what is gained by the other. From this, we can calculate things. We do as follows:
</span>Heat gained = Heat lost
mC(T2-T1) = - mC(T2-T1)
31.5C (102.4 - 32.5) = 103.5(4.18)(32.5 - 24.5)
C = 1.57 J/C-g
Hope this helps.
The scheme is shown below, the steps involved are as follow,
Step one: Reduction: The carbonyl group of given compound on reduction using
Wolf Kishner reagent converts the carbonyl group into -CH₂- group.
Step two: Epoxidation: The double bond present in starting compound when treated with
m-CPBA (<span>meta-Chloroperoxybenzoic acid) gives corrsponding epoxide.
Step three: Reduction: The epoxide is reduced to alcohol on treatment with
Lithium Aluminium Hydride (LiAlH</span>₄)<span> followed by hydrolysis.
Step four: Oxidation: The hydroxyl group (alcohol) is
oxidized to carbonyl (ketonic group) using oxidizing agent
Chromic acid (H</span>₂CrO₄).
If this is just a general question it seems to vary from about 4.5g to 5g. Is there more data to the question?