Since Fluorine has 2 electrons in the s orbitals and 5 in the p orbitals of shell number 2, there is a total of 7 valence electrons.
<span>When the fuel of the rocket is consumed, the acceleration would be zero. However, at this phase the rocket would still be going up until all the forces of gravity would dominate and change the direction of the rocket. We need to calculate two distances, one from the ground until the point where the fuel is consumed and from that point to the point where the gravity would change the direction.
Given:
a = 86 m/s^2
t = 1.7 s
Solution:
d = vi (t) + 0.5 (a) (t^2)
d = (0) (1.7) + 0.5 (86) (1.7)^2
d = 124.27 m
vf = vi + at
vf = 0 + 86 (1.7)
vf = 146.2 m/s (velocity when the fuel is consumed completely)
Then, we calculate the time it takes until it reaches the maximum height.
vf = vi + at
0 = 146.2 + (-9.8) (t)
t = 14.92 s
Then, the second distance
d= vi (t) + 0.5 (a) (t^2)
d = 146.2 (14.92) + 0.5 (-9.8) (14.92^2)
d = 1090.53 m
Then, we determine the maximum altitude:
d1 + d2 = 124.27 m + 1090.53 m = 1214.8 m</span>
The sound waves will get smaller and smaller till there is no more bc it is off.
When the object is at rest, there is a zero net force due the cancellation of the object's weight <em>w</em> with the normal force <em>n</em> of the table pushing up on the object, so that by Newton's second law,
∑ <em>F</em> = <em>n</em> - <em>w</em> = 0 → <em>n</em> = <em>w</em> = <em>mg</em> = 112.5 N ≈ 113 N
where <em>m</em> = 12.5 kg and <em>g</em> = 9.80 m/s².
The minimum force <em>F</em> needed to overcome <u>maximum</u> static friction <em>f</em> and get the object moving is
<em>F</em> > <em>f</em> = 0.50 <em>n</em> = 61.25 N ≈ 61.3 N
which means a push of <em>F</em> = 15 N is not enough the get object moving and so it stays at rest in equilibrium. While the push is being done, the net force on the object is still zero, but now the horizontal push and static friction cancel each other.
So:
(a) Your free body diagram should show the object with 4 forces acting on it as described above. You have to draw it to scale, so whatever length you use for the normal force and weight vectors, the length of the push and static friction vectors should be about 61.3/112.5 ≈ 0.545 ≈ 54.5% as long.
(b) Friction has a magnitude of 15 N because it balances the pushing force.
(c) The object is in equilibrium and not moving, so the acceleration is zero.
The graph that shows the change in velocity of an object in free fall is graph B.
<h3>What is velocity?</h3>
Velocity is the speed of a body in a specified direction.
It is also defined as the ratio of displacement and tome.
Velocity is a vector quantity.
The change in velocity of a body is known as acceleration.
The velocity of a body undergoing free fall increases by a constant value given as by the acceleration due to gravity.
The graph which depicts this change in velocity is B.
Therefore, the graph that shows the change in velocity of an object in free fall is graph B.
Learn more about velocity and free fall at: brainly.com/question/24520854
#SPJ1